pg电子官方网站
博学笃行 止于至善
导航菜单
2024.12.16,琚强昌,研究员,北京应用物理与计算数学研究所,The global existence and low Mach number limit for full Navier-Stokes equations around the Couette flow in a finite channel
发布时间: 2024-12-16 09:33 作者: 点击: 72

偏微分方程系列报告

报告题目: The global existence and low Mach number limit for full Navier-Stokes equations around the Couette flow in a finite channel

报告人:   琚强昌 研究员 (北京应用物理与计算数学研究所)

报告摘要:We study the global existence and low Mach number limit of strong solutions to the 2-D full compressible Navier-Stokes equations around the plane Couette flow in a horizontally periodic layer with non-slip and isothermal boundary conditions. It is shown that the plane Couette flow is asymptotically stable for sufffciently small initial perturbations, provided that the Reynolds number, Mach number and temperature difference between the top and the lower walls are small. For the case that both the top and the lower walls maintain the same temperature, we further prove that such global strong solutions converge to a steady solution of the incompressible Navier-Stokes equations as the Mach number goes to zero.

报告人简介: 琚强昌,北京应用物理与计算数学研究所研究员,博士生导师。河南师范大学获学士和硕士学位,2003年获中科院数学所博士学位,师从肖玲研究员。2003-2005年在德国和意大利从事博士后研究。研究域为:可压缩流体力学方程的数学理论。部分研究工作发表在Adv. Math.、 Arch. Ration. Mech. Anal.、Comm. Math. Phys. 和J. Math. Pures Appl. 等国际权威学术期刊上,2017年获教育部自然科学奖二等奖,目前主持国家自然科学基金面上项目和重点项目。

报告时间: 2024.12.16(周一) 下午 4:00-5:30

报告地点: 教学楼104